Regular Cayley maps for finite abelian groups
نویسندگان
چکیده
A regular Cayley map for a finite group A is an orientable map whose orientation-preserving automorphism group G acts regularly on the directed edge set and has a subgroup isomorphic to A that acts regularly on the vertex set. This paper considers the problem of determining which abelian groups have regular Cayley maps. The analysis is purely algebraic, involving the structure of the canonical form for A. The case when A is normal in G involves the relationship between the rank of A and the exponent of the automorphism group of A, and the general case uses Ito’s theorem to analyze the factorization G = AY , where Y is the (cyclic) stabilizer of a vertex.
منابع مشابه
On the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian
In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.
متن کاملNORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS
Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.
متن کاملON THE NORMALITY OF t-CAYLEY HYPERGRAPHS OF ABELIAN GROUPS
A t-Cayley hypergraph X = t-Cay(G; S) is called normal for a finite group G, if the right regular representationR(G) of G is normal in the full automorphism group Aut(X) of X. In this paper, we investigate the normality of t-Cayley hypergraphs of abelian groups, where S < 4.
متن کاملA Classification of Prime-valent Regular Cayley Maps on Abelian, Dihedral and Dicyclic Groups
A Cayley map is a 2-cell embedding of a Cayley graph into an orientable surface with the same local orientation induced by a cyclic permutation of generators at each vertex. In this paper, we provide classifications of prime-valent regular Cayley maps on abelian groups, dihedral groups and dicyclic groups. Consequently, we show that all prime-valent regular Cayley maps on dihedral groups are ba...
متن کاملClassification of coset-preserving skew-morphisms of finite cyclic groups
The concept of a coset-preserving skew-morphism is a generalization of the widely studied t-balanced skew-morphisms of regular Cayley maps which are in turn generalizations of group automorphisms. In case of abelian groups, all skew-morphisms of regular Cayley maps are roots of coset-preserving skew-morphisms, and therefore, classification of cosetpreserving skew-morphisms of finite abelian gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003